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Abstract

In this article we present a high resolution hybrid central finite difference-WENO
scheme for the solution of conservation laws, in particular, those related to shock-
turbulence interaction problems. A sixth order central finite difference scheme is
conjugated with a fifth order weighted essentially non-oscillatory WENO scheme in a
grid-based adaptive way. High Order Multi-Resolution analysis is used to detect the
high gradients regions of the numerical solution in order to capture the shocks with
the WENO scheme while the smooth regions are computed with the more efficient
and accurate central finite difference scheme. The application of high order filtering
to mitigate the dispersion error of central finite difference schemes is also discussed.
Numerical experiment with the 1D compressible Euler equations are shown.

Key words: Central Finite Difference, WENO, Multi-resolution, Hybrid,
Conservation Laws

1 Introduction

Direct numerical simulation of turbulent flows requires very accurate numerical schemes
with the ability to resolve both large and small eddies that are often at wavelengths differing
several orders of magnitude from each other. High order central finite difference (CeFD)
schemes are straightforward, easy to implement, and sufficiently accurate to capture the
smallest resolvable scales presented at these problems with a small number of points per
wavelength. Many such high order finite difference schemes had been discussed and deployed
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for solving linear advection problems such as the Maxwell equations in Electro-Magnetics
and wave equations in Acoustics ([17,4]).

Another important issue appears when dealing with the modeling of compressible flows via
the inviscid Euler equations due to the spontaneous appearance of finite time singularities.
When applied to such problems, fixed stencil explicit schemes like central finite difference
schemes produce oscillations that do not decrease in size with grid refinement. This so-
called Gibbs Phenomenon causes loss of accuracy and, if not properly controlled by means
of artificial dissipation, instability might follow as a consequence of the contamination of
the solution by these oscillations. Essentially Non-Oscillatory schemes (ENO) [14] have been
developed in order to overcome the Gibbs phenomenon. ENO schemes make use of nonlinear
weights based on divided differences of the numerical solution in order to bias the local
stencils when computing derivatives, avoiding interpolations across discontinuities. Weighted
Essentially Non-Oscillatory schemes (WENO) [11,13] are an improvement over ENO schemes
due to their higher order of accuracy with same stencil size. A convex combination of all
the possible sub-stencils of ENO achieves optimal order of accuracy at the smooth parts of
the solution. Nevertheless, the intrinsic numerical dissipation of WENO schemes, although
necessary to properly capture shock waves, might seriously damp relevant small scales.

A natural idea is then to conjugate shock capturing schemes, to be applied around disconti-
nuities, with high order central finite difference methods for the smooth parts of the solution.
In this article, we study the conjugation of high order central Finite Difference and WENO
schemes when numerically solving systems of hyperbolic conservation laws. One important
component is a switch algorithm to dynamically decide,at any given time step, which scheme
to turn on at each grid point. The switch we apply is based on Ami Harten’s work [7,8], where
a high order Multi-Resolution analysis (MR) is performed at every step of the temporal in-
tegration process. The resulting adaptive scheme ensures that fluxes at grid points around
discontinuities will always be computed by a WENO scheme, where as smooth tendencies
will not suffer any unnecessary extra damping since they will be treated by a CeFD scheme.
Another advantage is that the application of the CeFD scheme avoids the heavy machinery
employed by the characteristic-wise WENO finite difference algorithm such as the evaluation
of the Jacobian of the fluxes, characteristics decomposition and recomposition and the global
Lax-Friedrichs flux splitting.

In this work, we will focus on the maximum order central finite difference scheme. Other
standard and dispersion optimized central finite difference schemes can be employed [17]
but will not be explored in this study at this time. Due to the non-dissipative nature of
the central finite difference scheme, the inherent dispersion error, although small, generates
undesirable oscillations polluting the solution in time. By applying high order filtering [16]
we are able to mitigate grid-size oscillations that, otherwise, would destroy the accuracy.

The paper is organized as follows: In Section 2 we briefly introduce the WENO finite differ-
ence scheme. Section 3 presents Harten’s multi-resolution algorithm. A brief discussion on
the central finite difference scheme is given in Section 4. The Hybrid scheme is presented in
Section 5. Numerical experiments with the proposed Hybrid scheme for the one dimensional
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Mach 3 shock-entropy wave interaction are shown in Section 6. The conclusion is given in
Section 7.

2 ENO and WENO schemes

In this section we describe the ENO and WENO schemes for one dimensional scalar conser-
vation laws :

ut + f(u)x = 0. (1)

The conservative finite difference formulation of (1) in a uniformly spaced grid is

dui(t)

dt
= − 1

∆x

(
f̂

j+
1
2

− f̂
j−1

2

)
, (2)

where ∆x is the grid size, ui(t) is the solution within the stencil Ii =
[
x

i−1
2
, x

i+
1
2

]
and the

numerical flux
f̂

i+
1
2

= f̂(ui−r, ..., ui+s), (3)

with r and s, integer parameters defining the set of values used for the computation of the
flux f(u), satisfies the following conditions:

• f̂ is a Lipschitz continuous function in all the arguments;
• f̂ is consistent with the physical flux f , i.e., f̂(u, u, ..., u) = f(u).

Thus, the Lax-Wendroff theorem applies, and the conservative scheme (2), if it converges,
will converge to a weak solution.

The following problem is related to the computation of the numerical flux f̂ above:

Given vi = v(xi), find v̂
i+

1
2

= v̂(vi−r, ..., vi+s) such that

1

∆x

(
v̂

i+
1
2
− v̂

i−1
2

)
= v′(xi) + O(∆xk). (4)

In other words, it is desired that the flux difference above be a k-th order approximation to
the derivative of v. This can be accomplished by means of an auxiliary function h(x) which
can be implicitly defined as:

v(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ. (5)

Since

v′(xi) =
1

∆x

(
h

i+
1
2
− h

i−1
2

)
, (6)

we take
v̂

i+
1
2

= h
i+

1
2

+ O(∆xk), (7)
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and the problem is solved.

We are now left with the problem of finding a k-th order approximation for h(x). We start by
noticing that, as defined above, {vi} are the cell averages of h(x) in the intervals Ii. Therefore,
the primitive function of h(x) can be defined as H(x) =

∫ x
−∞ h(x)dx and the exact values

of H(x) at x
i+

1
2

is H(x
i+

1
2
) = ∆x

∑i
j=−∞ vj. By interpolating H(x) at these values, one can

find a k + 1 degree interpolating polynomial P (x). Thus the derivative p(x) = P ′(x) is the
desired k-th order approximation of h(x) we are looking for. Thus

v̂
i+

1
2

= pr
i

(
x

i+
1
2

)
=

k−1∑

j=0

crjvi−r+j = h
(
x

i+
1
2

)
+ O(∆xk) r = 0, . . . , k − 1. (8)

where the coefficients crj are obtained through Lagrangian interpolation process (see [11]).
They depend on the order k of approximation and also on the left-shift parameter r, but not
on the values vi. Since r can vary from 0 to k−1, we have k distinct interpolating polynomials
to choose from; all of them yielding a k-th order approximation, once v is smooth inside the
intervals considered. The above process is called the reconstruction step, for it reconstructs

the values of h
(
x

i+
1
2

)
at the cell boundaries from the cell average values h(x) in the interval

Sr = {⋃k−1
j=0 Ii−r+j, r = 0, . . . , k − 1} = {xi−r, ..., xi+s} with s = k − r − 1.

The key idea of a k-th order ENO (Essentially Non-Oscillatory) scheme [14] is to use the
smoothest stencil Sr among the k candidates in order to avoid Gibbs oscillations near shocks.
ENO chooses the parameter r in a way that no discontinuity is inside the stencil intervals
of the stencil Sr. However, in smooth regions all stencils together carry information for
an approximation of order higher than r. WENO is an improvement over ENO for it uses
a convex combination of all available polynomials for a fixed k, assigning essentially zero
weights to stencils containing discontinuities. This yields a (2k− 1) order method at smooth
parts of the solution. The flux f̂

i+
1
2

of the WENO method is defined as

f̂
i+

1
2

=
k−1∑

r=0

ωrp
r
i

(
x

i+
1
2

)
. (9)

The essentially non-oscillatory property is obtained by requiring that the weights ωr reflect
the relative smoothness of f :

ωr =
αr∑k−1

l=0 αl

with αr =
Cr

(ε + ISr)β
, (10)

where β = 2 and Cr are the ideal weights (see [2,11]) The parameter ε is set to 10−10. A
good review of the role of the ε in the accuracy of the WENO scheme can be found in a
recent paper [9]. There, loss of accuracy around critical points in the classical WENO scheme
was also discussed and a fix was proposed, which is also implemented in this work. ISj is a
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measure of the smoothness of polynomials on the stencils Sj:

ISj =
k−1∑

l=1

|∆x|2l−1
∫ x

j+
1
2

x
j−

1
2

(
dl

dxl
pr

j(x)

)2

dx. (11)

When the interpolation polynomial pr
j in a given stencil Sj is smooth, the smoothness indi-

cator ISj is relatively much smaller than those of stencils where the polynomial has discon-
tinuities in its first r − 1 derivatives. Therefore, discontinuous stencils receive an essentially
zero weight.

For the system of Conservation Laws such as the Euler equations (22), the left and right
eigenvectors and eigenvalues of the Jacobian of the flux is computed via the Roe Average
method. The global Lax-Friedrichs flux splitting is used to split the flux into its positive
and negative components. The resulting positive and negative fluxes are then projected
in the characteristic field via the left eigenvectors. Each characteristic flux values is then
reconstructed according to the WENO algorithm above with one point upwinding bias at
each cell boundary. The numerical flux f̂

i+
1
2

is obtained by projecting the reconstructed

characteristic flux values back into the conservative field via the right eigenvectors of the
Jacobian of the flux. The details of the algorithm can be found in [11,13].

3 Multi-Resolution Analysis

It is essential for the Hybrid scheme proposed in this article to measure the smoothness of
the solution in a high order fashion such that the appropriate high order algorithm can be
used at distinct grid points.

It is common in the literature to look at divided differences of the solution in order to indicate
the presence of discontinuities at a particular grid location when such differences exceed a
given tolerance. When performing the numerical calculations of Section 6, the density field
will be the one used for the analysis, since not only it contains the discontinuities due to the
shocks and the rarefaction waves, but also the contact discontinuities, which are present in
the weak solutions of systems of conservation laws such as the Euler equations.

In this work, we employ the Multi-Resolution (MR)algorithms by Harten [7,8] to detect the
smooth and rough parts of the solution.

Consider a set of nested dyadic grids {Gk, 0 ≤ k ≤ L}, defined as:
Given an initial number of the grid points N0 and grid spacing ∆x0,

Gk = {xk
j , j = 0, . . . , Nk}, (12)
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where xk
j = j∆xk,∆xk = 2k∆x0, Nk = 2−kN0 and the cell averages f̄k

j of function f at xk
j :

f̄k
j =

1

∆xk

∫ xk
j

xk
j−1

f(x)dx, (13)

Let f̃k
2j−1 be the approximation to f̄k

2j−1 by the unique polynomial of degree 2s that interpo-
lates f̄k

j+l, |l| ≤ s at xk
j+l, where r = 2s + 1 is the order of approximation .

The approximation error (or multiresolution coefficients) dk
j = f̄k−1

2j−1 − f̃k−1
2j−1, at the k-th grid

level and grid point xj, has the property that if f(x) has p− 1 continuous derivatives and a
jump discontinuity at its p-th derivative as denoted by [·], then

dk
j ≈





∆xp
k[f

(p)] for p ≤ r

∆xr
kf

(r) for p > r
. (14)

The approximation error dk
j measures how close the data at the finer grid

{
xk−1

j

}
can be

interpolated by the data at the coarser grid
{
xk

j

}
. From formula (14) it follows that

|dk−1
2j | ≈ 2−p̄|dk

j |, where p̄ = min{p, r}, (15)

which implies that away from discontinuities, the MR coefficients {dk
j } diminish in size with

the refinement of the grid at smooth parts of the solution; close to discontinuities, they
remain the same size, independent of k.

The MR coefficients {dk
j} were used in [8] in two ways. First, finer grid data f̄0

j were mapped to
its multiresolution representation f̄M = ({d1

j}, · · · , {dL
j }, f̄L) to form a multiscale version of a

particular scheme, where truncation of small quantities with respect to a tolerance parameter
εMR decreased the number of operations at fluxes computation. Secondly, the MR coefficients
{dk

j } were also used to generate a shock detection mechanism and an adaptive method was
designed where a second-order Lax-Wendroff scheme was locally switched to a first-order
accurate TVD Roe scheme, whenever {d1

j} was larger than the tolerance parameter. In
this article, we employ the latter idea where a high order central finite difference scheme
is switched to a high order WENO scheme whenever a ”sensor”, represented by the {dk

j },
detects discontinuities at any grid point. Since we will be using the first level k = 1 only, we
shall drop the superscript 1 from the d1

j from here on unless noted otherwise.

The adaptive method of Harten used only the first level {dj} with a fixed MR order. However,
(14) also indicates that the variation of the MR order can give additional information on the
type of the discontinuity. For instance, consider the piecewise analytical function

f(x) =





10 + x3 −1 ≤ x < −0.5

x3 −0.5 ≤ x < 0

sin(2πx) 0 ≤ x ≤ 1

. (16)
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The test function (16) has a jump discontinuity at x = −0.5 and a discontinuity at its first
derivative at x = 0 as depicted in Figure 1 and is analyzed by the third and the eighth orders
MR. As shown in Figure 1, the quantity {dj} at each grid point decays exponentially to zero
inside each analytical piece of the function when the order of the MR is increased from
third to eighth. At the discontinuity x = 0.5, {dj} is O(1) and remained unchanged despite
the increase of the MR order. Similar behavior of the {dj} are exhibited at the derivative
discontinuity at x = 0 with a much smaller amplitude. The extent of the eighth order MR is
larger than the third order because more functional values are needed to perform the analysis
at the higher order. In general, NMR = 2(nMR + 1) number of functional values are needed
for a given MR order nMR.
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Fig. 1. Multi-Resolution Analysis of (Left) the test function (16) and (Right) the Lax problem.

Also, in Figure 1, the density f(x) = ρ(x) of the Lax shock tube problem with Riemann initial
condition and the MR coefficients {dj} are shown. The location of the shock at x ≈ 2.5, the
contact discontinuity at x ≈ 1 and the discontinuities at the edges of the rarefaction wave
x ≈ −1.8 and x ≈ −2 are clearly delineated by the MR coefficients {dj}. Higher order
MR would not make any distinguishable difference here as the solution is a piecewise linear
function.

Analogy between the wavelet analysis and the Multi-Resolution Analysis is apparent, the
MR coefficients {dk

j} are wavelet coefficients. Interested readers are referred to the seminal
book by Daubechies [6] and references contained therein for a detailed exposition of Multi-
Resolution Analysis in the context of wavelet analysis.

4 Central Finite Differences Schemes

In the following discussion, the computational grid is restricted to a uniformly spaced grid,
i.e. {xj = j∆x, j = 0, . . . , N}, where ∆x is the grid spacing. For a given data {fj = f(xj), j =
0, . . . , N}, the first derivative of the function d

dx
f(xj) can be approximated to order n using

2n + 1 grid points {xj−n, . . . , xj+n} and its corresponding functional values {fj−n, . . . , fj+n}
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as
d

dx
f(xi) =

1

∆x

n∑

j=−n

wjfi+j , (17)

where wj are the Lagrangian weights of the first derivative and here we assumed N ≥ 2n+1.

One of the good properties of a central finite difference scheme is that it is non-dissipative in
nature; however, dispersion is also present, requiring the use of high order smoothing. The
non-dissipative property is guaranteed by requiring w−j = −wj. To examine its dispersive
property, the Fourier transform is applied to (17), yielding the effective wavenumber κ of the
scheme, which can be expressed in terms of the exact wavenumber k in the form:

κ∆x = 2
n∑

j=1

wj sin(jk∆x). (18)

The difference between the effective wavenumber κ and the exact wavenumber k is the
dispersion error E(k∆x) = |k∆x − κ∆x|. The higher the order n of the scheme, the better
the scheme can resolve higher wavenumbers. However, the error analysis also indicates that
the wavenumber k = π

∆x
can never be resolved regardless of the order of the scheme (see

Figure 2). In other words, without artificial dissipation, one can expect high wavenumbers
(frequencies) error in the solution of a nonlinear hyperbolic PDE.

To mitigate dispersion error on the solution, we propose to apply high order filtering. By
this, we mean that the large scales of the function are preserved up to the order of the central
finite difference scheme, while the small scales usually associated with noise and error will
be attenuated smoothly to zero.

For a given function f , discretized on a uniformly spaced grid, the filtered function f̂ at the
grid point xi can be expressed as

f̂i =
n∑

j=−n

αjfi+j , (19)

where αj are the filtering weights of order n. The filtering weights satisfy the symmetry
property α−j = αj , ensuring no dispersion. The α are chosen in such a way that the first
n moments of the filtered function match exactly the first n monomials {1, x, x2, . . . , xn}
ensuring that the approximation order of the filtered function is kept high. In addition to
that, the α are also required to satisfy the condition

∑n
j=−n αj(−1)j = 0 so that oscillations

at high wavenumbers k near π
∆x

are attenuated to zero. By applying the Fourier transform
to (19), the physical filter can be expressed as a filter σ(k∆x) in the frequency space,

σ(k∆x) = α0 + 2
n∑

j=1

αj cos(jk∆x), (20)

with σ(0) = 1 and σ(π) = 0 for normalization. The higher the order, the flatter is the
filter near the wavenumber k = 0 (see Figure 2). Therefore, more low wavenumbers remain
unaltered and less higher wavenumbers get attenuated to zero. Some of these filtering weights
α can be found in [16].
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Fig. 2. The dispersion relation (left) and filter σ(k∆x) (right) of Central finite difference scheme of
orders n = 4, 6, 8, 10.

5 High Order Hybrid Central - WENO Finite Difference scheme

In this section, we introduce the High Order Hybrid Central Finite Difference-WENO finite
difference scheme (Hybrid) for the Euler equations and discuss related issues such as the
dispersion error associated with it. In this particular context, we define the Hybrid scheme
as a grid-based adaptive method in which :w the choice of the numerical scheme is determined
by the smoothness of the solution at each grid point.

Like many adaptive methods in the literature, the smoothness of the solution is measured by
some criteria, such as the gradient of the solution [1,12], or by the Multi-Resolution procedure
[3,5]. A finite difference scheme such as a Compact scheme [1] or an optimized central finite
difference scheme [10] can be used at those grid points where the solution is flagged as smooth
in lieu of the standard high order WENO scheme. By avoiding the computationally expensive
characteristics decomposition/recomposition and Jacobian evaluations of the WENO finite
difference scheme, it is anticipated that the Hybrid scheme will provide greater efficiency
and resolution, in particular, for large scale simulations of turbulence [10].

Here are some details of the implementation of the Hybrid scheme:

• The Hybrid scheme consists of a sixth order Central Finite Difference scheme (CeFD6) and
a fifth order WENO finite difference scheme (WENO5) for the smooth and discontinuous
parts of the solution respectively.

• The third order three stage Runge-Kutta TVD scheme (RK3) is employed for the temporal
evolution of the resulting ODE with CFL=0.4 (see [11]).

• The Multi-Resolution Analysis is applied only once at the beginning of the Runge-Kutta
time stepping scheme. A grid point is flagged as non-smooth when the MR coefficient
|di| > εMR, a user defined MR tolerance and the WENO flux will be employed there.

Flagi =





1, |di| > εMR

0, otherwise
. (21)
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• Once the flags are set, a number of neighboring points around each flagged point xi,
depending on the number of the ghostpoints needed for a given order of the CeFD scheme
and the WENO scheme, are also flagged to 1.

In particular, if Nc and Nw are the orders of the CeFD scheme and the WENO scheme
respectively, the number of ghostpoints required by the CeFD scheme and the WENO
scheme are 1

2
Nc and 1

2
(Nw + 1) respectively. At any given point, say xi, flagged as non-

smooth, its r = max
(

1
2
Nc,

1
2
(Nw + 1)

)
neighboring points {xi−r, . . . , xi, . . . , xi+r} will also

be designated as non-smooth, that is, {Flagj = 1, j = i − r, . . . , i + r}. This procedure
avoids computing the derivative of the solution by the CeFD scheme using non-smooth
functional values. Furthermore, the same WENO flag will be used at all the Runge-Kutta
stages and will be updated at the next time step.

• Since the CeFD scheme is numerically more efficient when compared to the WENO scheme,
we opt for initially computing the flux over the complete flow field with the CeFD scheme.
The WENO scheme is then used to overwrite the flux at those grid points designated as
non-smooth by the WENO flag.

• The class of problems studied are restricted to those where the boundary conditions do
not present any complications with the ghostpoints, for instance, periodic or freestream
boundary conditions. We shall use as many ghostpoints as required for the given order of
the CeFD scheme, the WENO scheme and the Multi-Resolution Analysis.

6 Numerical Experiments

Let us now consider the one dimensional Euler Equations for gas dynamics in strong conser-
vation form:

∂
−→
W

∂t
+

∂ ~F

∂x
= 0. (22)

−→
W = [ρ, m, E]T is the vector of conservative variables and the flux ~F is given by

~F =

[
m,

m2

ρ
+ P, (E + P )

m

ρ

]T

. (23)

Here ρ,m, and E are, respectively, the density, mass flux and total energy per unit volume.
It is coupled with the equation of state for ideal gas, P = (γ − 1)(E − 1

2
m2/ρ) with γ = 1.4.

Consider the one dimensional Mach 3 shock-entropy wave interaction, specified by the fol-
lowing initial conditions:

(ρ, u, P ) =





(3.857143, 2.629369, 10.33333) x < −4

(1 + ε sin(kx), 0, 1) x > −4
, (24)

where x ∈ [−5, 5] , ε = 0.2 and k = 5. The solution of this problem consists of not only large
scales waves but also shocklets and fine scales structures which are located immediately
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behind the shock. We computed the solution at time t = 1.8 with N = 400 uniformly spaced
grid points using both the standard fifth order WENO finite difference scheme (WENO5)
and the Hybrid sixth order central finite difference-fifth order WENO finite difference scheme
(Hybrid). The parameters used in the Multi-Resolution Analysis for the Hybrid scheme are
order nMR = 8, tolerance εMR = 5× 10−3 using the density ρ as the test function. In the left
figure of Figure 3, the solid black line and red square symbols depict the density computed
with the WENO5 scheme and the Hybrid scheme respectively. The red dash line encloses
the grid points where the solution is deemed insufficiently smooth by the MR Analysis. The
WENO5 scheme is employed at these grid points in order to capture the main shock and
shocklets and avoid oscillations. The CeFD6 scheme is used for the rest of the grid points. At
this scale, the results of the WENO5 scheme and the Hybrid scheme are in good agreement
with each other.
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Fig. 3. (Left) : The density solution of the Mach 3 shock-entropy wave interaction with N = 400 at
time t = 1.8. (Middle) : Zooming of the inflow region and dispersion oscillations. (Right) : Shows
the effectiveness of the filtering in controlling the dispersion error. The solid line and the square
symbols are solutions as computed by the WENO5 scheme and the Hybrid scheme respectively.

As mentioned earlier, wave dispersion is an issue when using a non-dissipative central finite
difference scheme. When zooming at the inflow region x ∈ [−5,−3] (middle figure of Figure
3), one observes the oscillations caused by dispersion. As proposed in last section, we apply
high order filtering in order to mitigate the dispersion error. The order of the filter nF used
in this study is always 2 orders higher than the order of the central finite difference scheme
nCFD, i.e. nF = nCFD +2. Furthermore, the filtering operation will be performed at the end of
the Runge-Kutta time step. Filtering in the intermediate stages of the Runge-Kutta scheme
is also possible if deemed necessary.

The density solution of the shock-entropy wave interaction as computed by the filtered version
of the Hybrid scheme and the zooming near the inflow region are shown at the right figure
of Figure 3. It can be easily observed that the eighth order filtering improves the quality of
the solution. The filter effectively controls the dispersion error and localizes the oscillations
close to the steep gradients.

We now illustrate the algorithm with a longer time simulation by computing the solution up
to time t = 5 in a larger physical domain x ∈ [−5,−15] and N = 800 with both the WENO5
scheme and the Hybrid scheme with MR tolerance εMR = 10−2. Density plot, zooming of
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the high frequencies solution behind the main shock and the MR coefficients {dj} are shown
at time t = 5 in Figure 4. The main shock and the shocklets are well tracked and one sees
that the small scales behind the main shock are better resolved with the Hybrid scheme
than with the WENO5 scheme. Notice that given an appropriate threshold for the switch of
the schemes, the coverage of the WENO5 scheme remains relatively quite small, indicating
that the solution is mainly computed by the more efficient CeFD6 scheme. Furthermore, the
decay of the MR coefficients {dj} near the inflow region also indicates the fast decay of the
dispersion error.

x

R
h

o

5 0 5 10 15

1

2

3

4

5

x

R
h

o

9 10 11 12 13 14
3

3.5

4

4.5

5

x

S
ca

le

0 5 10 15

1013

1011

109

107

105

103

101

Fig. 4. (Left) : The density solution of the Mach 3 shock-entropy wave interaction with N = 800
at t = 5. (Middle) : Zooming of the high frequency waves behind the main shock. (Right) : The
multiresolution coefficients dj at t = 5.

The Hybrid scheme has the advantage of being considerably faster than the WENO5 scheme.
Even though timing of the one dimensional system of equations is not representative as timing
of a large scale simulation of a multi-dimensional system of PDEs, we provide a table listing
the average CPU usage in seconds per each Runge-Kutta step of the WENO5 scheme and
the Hybrid scheme just to illustrate the potential gain in computational speed. From table I,
the gain in speed can be as much as a factor of 2 for a number of grid points N = 800, 1000
and up to as much as a factor of 5 for larger N = 2000. It is obvious that the speedup
is a function of many factors such as the physical problem, the structure of the solution,
the choices of the parameters, the computational platform and programming efforts. A more
detailed study on computational time of the Hybrid scheme in comparison with the standard
WENO scheme will be given in a future paper.

N WENO5 Hybrid Speedup

800 3.8e-3 1.6e-3 2.4

1000 5.1e-3 2.1e-3 2.4

1500 1.3e-2 3.2e-3 4.1

2000 2.6e-2 4.7e-3 5.5
Table I
Average CPU time (seconds) per Runge-Kutta step as a function of N . The last column shows the
speedup factor by the Hybrid scheme over the WENO5 scheme.
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7 Conclusion

For the high resolution solution of the nonlinear conservation laws, we have conjugated an
efficient and accurate high order central finite difference scheme and the high order shock-
capturing WENO finite difference scheme together to form a hybrid scheme. The spatial
and temporal hybridization of these two schemes are accomplished via the high order Multi-
Resolution analysis. The numerical error due to the dispersive nature of the central finite
difference scheme is controlled and localized by the employment of the high order finite
difference filter, which maintains the formal high order of accuracy of the hybrid scheme.
The main advantages of the hybrid scheme are the potential large reduction of CPU time
needed to perform large scale numerical experiments and improvement in overall accuracy
over the classical high order WENO finite difference method. The reduction of the CPU time
usage is mainly due to removal of calculation of the Jacobian of the flux of the PDE, the
characteristic decomposition needed to project the flux from the conservative field into the
characteristic field, where the WENO reconstruction of the numerical flux takes place, and
back, in the smooth regions of the flow field. The improvement of the overall resolution is
due to the non-dissipative nature of the central finite difference scheme that yields a better
representation of the solution over the upwinding tendency of the WENO reconstruction
in order to avoid using stencils with potential high gradients. The success of the hybrid
scheme depends very much on the properly tuning of the parameters associated with the
Multi-Resolution analysis and is a subject of the research in progress.
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